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differ much in energies. In contrast, 2b should exist 
predominantly or even perhaps exclusively in the 
transoid conformation ab-I, due to increased nonbonded 
interactions in conformation 2b-11. In  conformation 
2b-I both CY protons are trans to the lone pair and cis to 
the N-methyl group. 
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The shielding of axial CY protons in saturated six- 
membered nitrogen heterocycles is well do~umented.'-~ 
This shielding is presumably caused by the anisotropy 
of the trans axial lone pair and that of the C-N bond 
of the equatorial alkyl substituent on the nitrogen, the 
former being the dominant factora4 

In  N-substituted pyrrolidines no such observation, 
concerning differentiation between a protons cis and 
trans to the lone pair, has been reported by nmr mea- 
surements at room temperature. It was, however, 
found recently that upon cooling the CY protons of N -  
methylpyrrolidine separate into two peaks with A6 of 
1.08 ppm that coalesce at about -100°.5 

In  this communication we assess the contributions 
of a trans lone electron pair and of a cis-N-methyl 
group to the shielding of a protons in pyrrolidines. 
Our observations also provide a method to assign the 
stereochemistry of N-alkyl-a,a'-disubstituted pyr- 
rolidines. 

In the course of our studies concerning the Leuckart 
reaction of cyclopropyl ketones that produce derivatives 
of py r r~ l id ine ,~ ,~  we have prepared cis- and tmns-2,5- 
diphenylpyrrolidine* (2a and 3a) and their N-methyl 
derivatives9 (2b and 3b). 
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a, R = H, b, R =Me 

Considering the possibility of nitrogen inversion in 
these pyrrolidinesJ10 i t  is evident that in the cases of 
3a and 3b the two pairs of invertomers are identical, 
and that the two possible invertomers of 2a should not 
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2b.I 2b-I1 
Examination of the nmr data (CDCL) listed in Table 

I reveals that the benzylic methine protons of the cis 

T.4BLE 1 
CHEMIChL SHIFTS OF CY PROTONS OF PYRROLIDINE 

AND SOME OF ITS DERIVATIVES~ 
7 - 8 ,  ppm-- 
CDCla CDCla + TFA 

Pyrrolidine ( la )  2.78 3.40 
cis-2,5-Diphenylpyrrolidine (2a) 4.25 5.00 

AT-Methylpyrrolidine (lb) 2.45 3.76, 3.00 
trans-2,5-Diphenylpyrrolidine (sa) 4.43 5.00 

cis-l-Methyl-2,5-diphenylpyrrol- 3.34 4.45 
idine (2b) 

idine (3b) 
trans-l-Methyl-2,6diphenylpyrrol- 4.10 5.20, 4.37 

a Measured by a Jeol C-60H instrument with TMS as internal 
standard. 

compounds (2a and 2b) appear a t  higher field than 
those of the trans isomers (3a and 3b), respectively. 
It can also be seen that N-methylation causes a con- 
siderably larger shift in the cis series (0.91 ppm) than 
it does for pyrrolidine and trans-2,rj-diphenylpyr- 
rolidine (0.33 ppm). 

Assuming that 2a, 3a, and 3b exist as 1 : 1 mixtures of 
their invertomers and that 2b exist entirely as the 
transoid ivertomer 2b-I it follows that (1) the CY protons 
of 2a, 3a, and 3b are shielded to the extent of 50% by 
the trans lone pair, (2) the CY protons of 3b are shielded 
to the extent of 50% also by the cis-N-methyl group, 
and (3) the CY protons of 2b are lOOyo shielded both by 
the cis-N-methyl group and by the trans lone pair. 

Consequently, the difference of 0.33 ppm between 
the chemical shifts of 3a and 3b represents 50% of the 
shielding by the cis-N-methyl group (compare la  and 
lb). The difference of 0.91 ppm between the chemical 
Rhifts of 2a and 2b should be due to 100% shielding of 
the CY protons by a cis-N-methyl group (0.66 ppm), plus 
50% shielding by the trans lone pair: 0.25 ppm (= 
0.91 - 0.66). The chemical shift difference of 0.18 
ppm between 2a and 3a may be due to deshielding of 
the a protons of 3a by the cis-phenyl groups." On 

(11) This difference may also indicate that the two possible conforma- 
tions of a& are not equally populated and that the invertomer with the 
N-H trans to the phenyl groups predominates. This seems to be supported 
by the identity of the 6 values of a& and 8& in acidic medium. If this 
view is accepted the value for 50% shielding by a trans lone pair should be 
corrected from 0.25 to 0.43 ppm. 
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the basis of these data we can estimate the chemical 
shift difference between the a protons of N-methyl- 
pyrrolidine in the absence of nitrogen inversion. In  
this case two of the a protons should be fully shielded 
both by the trans lone pair (0.50 ppm) and by the cis- 
N-methyl group (0.66 ppm) ; therefore the shift should 
amount to  1.16 ppm, which is in good agreement with 
the observed value of 1.08 ~ p m . ~  

The present conclusions are borne out by the results 
from the protonation experiments (Table I, column 2). 
In  the presence of excess trifluoroacetic acid (TFA) the 
a protons of Zb appear as one signal indicating a single 
protonated species. The a protons of lb and 3b are 
split into two signals of equal areas with a chemical 
shift difference of 0.76-0.83 ppm, which presumably re- 
sults from full-scale shielding of half of the a protons 
in lb and 3b by a cis-N-methyl group. It is worthy of 
note that the high field signal of 3b corresponds well 
with the chemical shift of the a protons of Zb, 
both of which are fully shielded by a cis-N-methyl 
group. 

From the data presented the following conclusions 
can be drawn. (1) The a protons of a pyrrolidine are 
shielded when situated trans to an electron pair and 
cis to  an N-methyl group. (2) The chemical shift 
difference of 1.08 ppm observed a t  - 100” between the 
a protons of N-methylpyrrolidine6 is caused pre- 
dominantly (0.66-0.83 ppm) by the cis-N-methyl 
group and to a lesser degree by the trans lone pair. 
(3) The stereochemistry of a symmetrically N,a,a’- 
trisubstituted pyrrolidine (and presumably any sym- 
metrical nitrogen heterocycle) can be established by 
examination of the nmr spectrum of the protonated 
form. In  the cis isomer the a protons should appear 
together, while in the trans isomer they should appear 
separately. (4) The treatment presented can easily 
be applied to  assess the contribution of a trans lone 
pair and that of a cis-N-alkyl group to the shielding of 
a protons in any saturated symmetrical nitrogen hetero- 
cycle. 

The shielding of a protons in azacycloalkanes by a 
trans lone pair12 and by a cis-N-alkyl group seems to be 
a general phenomenon. A consequence of this is that 
in pairs of cis,trans isomers of N-alkyl-a,a’ symmet- 
rically disubstituted azacycloalkanes the a protons of 
the cis isomer should always appear in the nmr a t  
higher field than those of the trans isomer. No excep- 
tion to this was found in an extensive literature survey 
of nmr data of appropriate three-, five-, and six-mem- 
bered azacycloalkanes. l3 

Further study of this problem in other ring systems 
is in progress. 
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It was reported’” that PhCCOR (R = Ph, Me) 
type ketocarbenes react with sulfur dioxide to give 
the ketosulfenes in competition with the Wolff rear- 
rangement, while RCCOPh (R = Me, H) type keto- 
carbenes do not react, but yield the products resulting 
from 1,Zhydrogen shift and a lj3-dipolar addition reac- 
tion. In  this case, it was suggested’” that the reso- 
nance form A or B of the PhCCOR type ketocarbene 
as shown in Scheme I reacts with sulfur dioxide, for 
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0 0 

sulfur dioxide is known to react electrophilically and 
radically, but no nucleophilically. 

In  order to obtain further information on the reac- 
tivity of the ketocarbene, thermal or photochemical 
reactions of several a-diazo ketones with molecular 
oxygen were investigated. 

A number of reports2 on the photochemical reactions 
of diaryldiazomethane and the thermal reactions of 
tetraarylethylenes with molecular oxygen have been 
published. These reactions are explained by the addi- 
tion of diarylcarbenes to molecular ~ x y g e n ~ - ~  (Scheme 

A “carbonyl oxide” (E) has been suggested4 as the 
primary product4b in the formation of cyclic peroxide4” 
from the photooxidation of diphenyldiazomethane. 
Also, the formation of benzophenone from the “car- 
bonyl oxide” (E) on irradiation of diphenyldiazometh- 
ane in solid air matrix a t  20°K has been reported.4c 

11). 
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